APPLICATION OF THE Γ-THEORY FOR THE CONSTRUCTION OF SPECTRAL MODELS OF ATMOSPHERIC GASES WITH ADJUSTABLE ACCURACY OVER NON-UNIFORM PATHS

F. André¹, V.P. Solovjov², B.W. Webb², M. Compiègne³, Ph. Dubuisson⁴, L. C.-Labonnote⁴

¹Univ. Lyon, CNRS, INSA Lyon, CETHIL, UMR 5008, F-69621 Villeurbanne, France
²Brigham Young University, 360G EB, Provo, UT 84602, USA
³Hygeos, 165 avenue de Bretagne, Euratechnologies, Lille, France
⁴Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d’Optique Atmosphérique, F-59000 Lille, France

ABSTRACT. The objectives of the present work are to provide some introduction to the theory underlying the novel spectral Gamma function, and to describe a first application of this new modeling strategy to narrow band atmospheric calculations. Among other, a general formulation is proposed that includes both the CKD (one pseudo-spectral dimensional Gamma model) and LBL (N pseudo-spectral dimensional Gamma model) techniques as particular limiting cases. This model allows the construction of approximate methods with an accuracy that the user can select in advance, making the present approach somewhat unique in the gas radiation literature.

* Corresponding Author: frederic.andre@insa-lyon.fr