EVALUATION OF NEW ALBDF FUNCTIONS BASED ON H\textsubscript{2}O AND CO\textsubscript{2} MIXTURES FOR VARIABLE MOLE FRACTION RATIO USING THE TWO-WAY ANOVA ANALYSIS

Luís Gustavo P. Rodrigues1*, Felipe R. Coelho2, Alex Krummenauer1, Vitor C. Nardelli1, Francis Henrique R. França2

1Instituto SENAI de Inovação em Soluções Integradas em Metalmecânica, Av. Getúlio Vargas, 3239, São Leopoldo, RS, Brazil

2Universidade Federal do Rio Grande do Sul, Av. Paulo Gama, 110, Porto Alegre, RS, Brazil

ABSTRACT. In the present work new absorption line blackbody distribution functions (ALBDF) are generated based on H\textsubscript{2}O and CO\textsubscript{2} mixtures for a wide range of mole fraction ratio (MR). The proposed methodology is compared with the conventional multiplication approach in the framework of the rank correlated spectral line-based weighted-sum-of-gray-gases model (SLW-RC). The line-by-line (LBL) solution is used as benchmark to evaluate both approaches accuracy in test cases representative of oxy-fuel combustion conditions. A two-way ANOVA analysis is carried out to achieve the differences between the methodologies and in the definition of the arbitrary value of reference blackbody source temperature $T\textsubscript{b}$ for the SLW-RC model. Results of radiative heat source shows that the proposed methodology leads to lower mean normalized errors than the conventional multiplication approach and that the definition of the $T\textsubscript{b}$ as the spatially averaged temperature is the optimal choice to compute the SLW-RC parameters.

* Corresponding Author: lgustavo.prodrigues@gmail.com