

1

*RANS: Reynolds-averaged Navier-Stokes; LES Large-eddy simulations; HRL: hybrid ³

			Type of Flow Experiment/DNS/LES	k SGDH	- e GGDH	k-c-02	k-6-82-69	DF
Comprehensive Set of Test	1	₹.	Heated vertical plate Exp: Tsuji & Nagano (1988)	x	x	x	x	×
Cases for Natural Convection	2	<u>ग</u> इ	Vertical channel, tall cavities (30:1) Exp: Betts & Dafa' Alla (1986) DNS: Boudjemadi /em et al.(1997) DNS: Versteerth & Nimuertadi (1997)	x	x	x	x	x
	3	<u> </u>	Penetrative convection of mixed layer above heated horizontal wall Exp: Deardorff et al. (1969)				x	x
	4		Rayleigh-Bénard convection Exp: Chu & Goldstein (1973) DNS: Grötzbach (1982), Kerr(1986) Balachandar et al. (1989), Wörtrer (1994)	x	×	×	x	
	5	τ _α Τ _ε	Side heated vertical cavities (1:1, 5:1) Exp: Cheesewright et al. (1986-90)	×	×	×	x	x
	6	$T_h \begin{bmatrix} T_c \\ T_h(or q=0) \end{bmatrix}$	Square cavities with mixed boundary conditions Exp: Kirkpatrick & Bohn (1986)	x	x	x		
	7	T _b T _c	Shallow cavities heated from side Exp: Olson et al. (1:2, 1:3) (1990)	x		x		
GDH – Simple Gradient Diffusion Hypothesis. (isotropio eddy diffusivity)	8	T _k	Partitioned multi-zone cavities with mixed boundary conditions Exp:	x				
iGDH - Generalized Gradient Diffusion (non-isotropic eddy diffusivity)	9	The Te	Cavities with partial division Exp: Nansteel & Greif (1984), Olson et al. (1990)	x	x	x		
AFM — Algebraic Flux Model DFM — Differential Flux Model	10	(To)	Horizontal concentric annuli Exp: Kuehn & Goldstein (1978), Mcleod & Bishop (1989) LES: Miki et al. (1993)	x	x	x		
	11	() Ti	Horizontal eccentric annuli Exp: Kuehn & Goldstein (1978)			x		
JDelft 2004	12		Side heated cubic enclosure Exp:			x		x

Governing equations and turbulence model for T-RANS
• Ensemble-averaged equations (<>) for momentum, energy and humidity:

$$\frac{D\langle U_i \rangle}{Dt} = -\frac{\partial \langle u_i u_j \rangle}{\partial x_i} - \frac{1}{\rho} \frac{\partial \langle P \rangle}{\partial x_i} + \beta_T g_i (\langle T \rangle - T_{ref}) - \beta_H g_i (\langle H \rangle - H_{ref})$$

$$\frac{D\langle T \rangle}{Dt} = -\frac{\partial \langle \theta u_i \rangle}{\partial x_i}; \quad \frac{D\langle H \rangle}{Dt} = -\frac{\partial \langle h u_i \rangle}{\partial x_i}; \qquad \beta_T = -\frac{1}{\rho_0} \left(\frac{\partial \rho}{\partial T}\right)_{H,p}; \quad \beta_H = \frac{1}{\rho_0} \left(\frac{\partial \rho}{\partial H}\right)_{T,p}$$
• Turbulence closure: "reduced" algebraic stress/flux model (*ASM/AFM k-\varepsilon-θ*²)

$$\langle u_i u_j \rangle = -v_i \left(\frac{\partial \langle U_i \rangle}{\partial x_j} + \frac{\partial \langle U_j \rangle}{\partial x_i}\right) + \frac{2}{3} \langle k \rangle \delta_{ij} - c_{\phi} \frac{\langle k \rangle}{\langle \varepsilon \rangle} \left[\beta_T \left(g_i \langle \theta u_i \rangle + g_j \langle \theta u_i \rangle\right) - \beta_H \left(g_i \langle h u_j \rangle + g_j \langle h u_i \rangle\right)\right]$$

$$\Rightarrow \quad \left(\theta u_i \rangle = -c_{\phi} \frac{\langle k \rangle}{\langle \varepsilon \rangle} \left[\langle u_i u_j \rangle \frac{\partial \langle T \rangle}{\partial x_j} + \xi \langle \theta u_j \rangle \frac{\partial \langle U_i \rangle}{\partial x_j} + \eta \beta_T g_i \langle \theta^2 \rangle + \varsigma \beta_H g_i \langle \theta h \rangle \right)$$

$$\langle h u_i \rangle = -c_{\phi} \frac{\langle k \rangle}{\langle \varepsilon \rangle} \left[\langle u_i u_j \rangle \frac{\partial \langle H \rangle}{\partial x_j} + \xi \langle h u_i \rangle \frac{\partial \langle U_i \rangle}{\partial x_j} + \eta \beta_H g_i \langle h^2 \rangle + \varsigma \beta_H g_i \langle \theta h \rangle \right)$$

