CONV-22 -KN II

TURBULENCE MEASUREMENTS IN A TURBINE CASCADE FLOW

Kedar Nawathe¹ and Terrence Simon^{1*}

¹ University of Minnesota – Twin Cities

Department of Mechanical Engineering, Minneapolis MN U.S.A

(* Corresponding author: simon002@umn.edu)

ABSTRACT. In this paper, we discuss the results of a measurement program initiated to describe the turbulence in a gas turbine first-stage vane passage. The flow entering the passage comes from a simulation of a low-NOx combustor within which the mainstream flow interacts with a series of crossjets to create a high-turbulence, large-turbulence-length-scale flow that passes downstream through a combustor-to-turbine transition duct and to the linear cascade that simulates a first-stage turbine. Measured mean flow, RMS velocity fluctuations, and dissipation of turbulence in the passage are compared with values computed using RANS simulation.